S0040-4039(96)00553-9

Base Promoted Reactions of 4-Pentynones.

Antonio Arcadi*a, Fabio Marinellia, Elena Pinib, Elisabetta Rossi*b.

^a Dipartimento di Chimica Ingegneria Chimica e Materiali , Università di L'Aquila, Via Vetoio, Coppito Due, I-67100 L'Aquila, Italy

^b Istituto di Chimica Organica della Facoltà di Farmacia. Università di Milano, Via Venezian 21, I-20139 Milano, Italy

Abstract: Different substituted furans are syntetised by cyclization of 4-pentynones using potassium tert-butoxide in DMF. A different reaction pattern is observed when the same compounds were treated with sodium methoxide in MeOH. A new approach to 2-propargyl-carbonyl compounds is also proposed. Copyright © 1996 Elsevier Science Ltd

The synthesis of many different substituted furan derivatives has been achieved by the intramolecular cyclization of acyclic precursors. Several of these methods involve the intramolecular attack of a nucleophilic oxygen over an alkyne functionality^{1,2} and among them, some examples of acid³ or transition metal⁴ mediated cyclization of enolizable ynones have appeared recently in the literature. Moreover, the synthesis of furans by base-catalysed cyclization of activated 4-pentynones has been recently reported.⁵

In connection with our ongoing interest in developing new synthetic strategies for the construction of five-membered heterocyclic rings involving alkyne derivatives⁶, we thought that the regioselective intramolecular *exo-dig* cyclization of 4-pentynones could represent a general procedure for the synthesis of functionalised furans. We wish to report the preliminary results of this investigation.

Starting compounds 1a-b were prepared by alkynylation of the corresponding α,β -unsaturated ketones⁷ (Scheme 1, Table 1).

Scheme 1

Although the preparation of 1a and 1b was possible by this method, the synthesis of 1c-f failed. Instead, an alternative strategy was employed involving terminal α -propargylketones 2, obtained by Stork enamine reaction with propargyl bromide⁸, as starting building blocks. In particular, compounds 1c-f were prepared from 2 through palladium-catalysed coupling reactions⁹ (1c-e) or a carbonylative palladium-catalysed reaction¹⁰ (1f), (Scheme 2, Table 1).

Table 1. 4-Pentynones 1a-f.

1	Yield	R	R ²	R ¹	R ³	_1	Yield	R	R ²	R ¹	R ³
а	57ª	Ph	н	Ph	Ph	d	43 ^b		CH ₂ —	н	CF ₃
b	65ª	CH≈CHPh	Н	Ph	Ph	е	93 ⁵	CH₂Ph	Ph	н	(C) _c
С	55 ^b	—(СН ₂	2)4—	н	Co	f	50 ^b	CH ₂ Ph	Ph	н	i

^a Reported yield⁷: **1a** (57%), **1b** (74%). ^b From α-propargylketone **2**.

The expected furan derivatives ¹¹ **3a-f** were obtained in good yields by reacting **1a-f** with t-BuOK in dry DMF (Scheme 3).

Scheme 3

The reaction mechanism probably involves a 5-exo-dig cyclization of the enolate 4 over the carbon-carbon triple bond followed by tautomerization to give furans 3a-f. However, for compounds 1a-b, bearing a phenyl substituent at the triple bond, a second mechanism involving a highly reactive allene intermediate cannot be excluded, Scheme 4.²

Scheme 4

When the same compounds 1a-f were reacted with MeONa (1.2 mol) in MeOH at 60 °C a different reaction pattern was observed. Compounds 1a and 1b gave respectively the (E,E) and (Z,E)-1,3,5-triphenyl-penta-2,4-dien-1-ones 5a and 5b and the (E,E,E) and (E,Z,E)-1,5,7-triphenyl-epta-1,4,6-trien-3-ones 5c and 5d (Scheme 4). The structures of 5a-d were assigned on the basis of ¹H-NMR analysis¹². Moreover, whereas compounds 1c-e were recovered unreacted even after prolonged reaction time, compound 1f gave the 2-cyclopentenone 6¹³. These results can be rationalised taking into account the relative reactivity of the enolate 4 in different medium. A polar aprotic solvent such DMF, which is very effective in solvating cations, increases the reactivity of the more electronegative atom of the enolate 4. On the contrary, when the reactions are performed in methanol, where the enolate 4 is hydrogen-bonded by solvent, the anion 4, generated from compounds 1a and 1b, probably isomerizes to the corresponding anionic allene 7; subsequent prototropic shift and allene-diene isomerization affords the final products 5a-d, (Scheme 5).

Scheme 5

A different behaviour was shown by the carbanion of 1f which carbocyclizes through a conjugated addition over the activated triple bond giving rise to the 2-cyclopentenone 6 (Scheme 6).

Scheme 6

The influence of the reaction medium is supported by the results obtained when compounds 1a and 1f were treated with sodium methoxide (1.2 mol) in a non-protic solvent such DMF. Under these conditions furans 3a and 3f were obtained as the sole reaction products.

In conclusion, in this work we reported an efficient synthesis of simple and polycondensate furans starting from different substituted pentynones and described for these compounds unusual base-catalysed reactions. A new approach to the synthesis of 4-pentynones and 2-pentyn-1,6-diones is also proposed. Further work is in progress to define the scope and limitations of these reactions.

Financial support from MURST (Roma) and CNR (Roma) is gratefully acknowledged.

REFERENCES

- 1. Katritzky, A.R.; Li, J. J. Org. Chem. 1995, 60, 638-643, and references cited therein.
- 2. Marshall, J.A.; DuBay, W.J. J. Org. Chem. 1994, 59, 1703-1708, and references cited therein.
- 3. Barluenga, J.; Tomàs, M.; Suàrez-Sobrino, A. Synlett 1990, 673-674, and references cited therein.
- 4. Arcadi, A.; Cacchi, S.; Larock, R.C.; Marinelli, F. *Tetrahedron Lett.* 1993, 34, 2813-2816, and references cited therein.
- 5. Vieser, R.; Eberbach, W. Tetrahedron Lett. 1995, 36, 4405-4408.
- 6. Arcadi, A.; Attanasi, O.A.; De Crescentini, L.; Rossi, E.; Serra-Zanetti, F. Tetrahedron in press.
- 7. Yamaguchi, M.; Hayashi, A.; Hirama, M. Chem. Lett. 1992, 2479-2482.
- 8. Stork, G.; Brizzolara, A.; Landesman, H.; Szmuskovicz, J.; Terrel, R. J. Am. Chem. Soc. 1963, 85, 207-222. 2-Propargylketones 2 were obtained in 68-84 % yield from the corresponding ketones.
- 9. Rossi, R.; Carpita, A.; Bellina, F. Organic Prep. and Proced. Int. 1995, 27, 127-160.
- 10. Ciattini, P.G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1991, 32, 6449-6452.
- 11. Synthesis of **3a**, general procedure: to a well stirred suspension of potassium *tert*-butoxide (1.2 mmol, 135 mg) in dry DMF (1 ml) a solution of 1,3,5-triphenyl-4-pentyn-1-one **1a** (1 mmol, 310 mg) in dry DMF (2 ml), was added. The mixture was stirred at 60°C for 3h and then poured in HCl 0.1 N (50 ml)/EtOAc (50 ml). The organic layer was separated and the aqueous phase extracted twice with EtOAc. The combined organic phases, dried over Na₂SO₄, were evaporated to dryness and the crude **3a** purified by flash chromatography over silica gel eluting with hexane/EtOAc (98:2). Yield: 83%. ¹H-NMR (200 MHz, CDCl₃, δ from TMS,): 4.17 (2H, s, CH₂); 6.78 (1H, s, H-3); 7.10-7.40 (13H, m, arom.); 7.63-7-70 (2H, m, arom.). EI-MS (m/z): 310 (M⁺, 66), 233 (15), 105 (100), 77 (86).
- 12. Østensen, E.T.; Mishrikey, M. Acta Chem. Scand. 1976, B30, 635-639; Kluge, A.F.; Lillya, C.P. J. Org. Chem. 1971, 36, 1977-1988.
- 13. ¹H-NMR data of compound **6** (200 MHz, CDCl₃, δ from TMS, J = Hz): 0.94 (6H, bs, CH₃); 1.02 (6H, bs, CH₃); 1.35 (2H, s, CH₂); 2.02 (2H, s, CH₂); 2.84 (1H, dd, J=2, 19, CH₂); 3.16 (1H, dd, J=7, 19, CH₂); 3.75 (1H, dd, J=2, 7, CH); 3.98 (2H, AB system, J=16, CH₂CO); 6.45 (1H, s, vinyl H); 7.18-7.43 (10H, m, arom.). ¹³C-NMR data of compound **6** (50.3 MHz, CDCl₃, δ from TMS): 29.5, 29.6, 30.6 and 30.7 (CH₃); 30.1 and 33.8 (quat. aliph. C); 36.2, 39.8 and 40.7 (CH₂); 49.0 (CH₂CO); 51.5 (CH); 126.8, 127.6, 128.1, 128.4, 128.7, 129.1, 131.3, 135.1, 139.7, 141.2, 150.0 and 167.7 (Csp₂); 197.0 and 206.0 (CO).

(Received in UK 19 February 1996; revised 14 March 1996; accepted 22 March 1996)